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We investigate the multiconfiguration time-dependent Hartree-Fock approach and show that it relaxes com-
putational requirements and makes accurate modeling of few-electron dynamics in nanodevices computation-
ally feasible. The method is applied to the optimization of the manipulation of a two-electron spin-based coded
qubit in a double quantum dot and is successfully tested against direct integration of the multidimensional
time-dependent Schrödinger equation. Our investigation presents a basis for the ab initio optimization of
few-qubit operations, which is prohibitively difficult to do with other numerical methods.
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I. INTRODUCTION

Ideally, a qubit is an isolated two-level system, which can
be controlled and manipulated for an unlimited time. In prac-
tice, qubits are embedded in the spectrum of a host system,
which is surrounded by an environment. Leakage, i.e., prob-
ability of the system being out of the qubit subspace, to the
host spectrum and to the environment leads to information
loss and compromises the qubit fidelity. This determines the
maximum time, �q, over which quantum computation can be
performed.

Leakage to the host spectrum can be kept small by per-
forming qubit operations close to the adiabatic limit. How-
ever, this limits the time required for one operation to �
�1 /�2, where � is the energy difference between the qubit
subspace and the next closest level of the host spectrum. As
a result, the number of maximum qubit operations is Nm
��q /�. A lot of effort has been put into maximizing Nm by
minimizing both the leakages to the host spectrum1 and to
the environment.2

Our work focuses on controlling the coupling between
qubit and host spectrum. In the absence of an environment,
Nm is maximized by shortening � and by minimizing the
leakage to the host system, L1. When � is reduced, the qubit
manipulation takes place in the nonadiabatic regime; i.e., an
increasingly broader band of the host spectrum is populated.
In order to regain the leaked population at the end of the
manipulation, optimum coherent control theory has to be
used.3

Usually, qubit dynamics are modeled using various de-
grees of approximations based on a reduced Hilbert space,
such as by a Hund-Mulliken picture,4 by a multilevel expan-
sion based on adiabatic eigenfunctions,5 or by reducing the
spatial dimensions per electron to one-dimensional �1D�.6
Whereas these approximations are sufficient for a qualitative
analysis of the dynamics, it is often not clear how close they
are to the exact result.

For quantum computation to work, a leakage per opera-
tion of L1�10−4 is required.7 As a result, computational ap-
proaches with corresponding accuracy are required to quan-
titatively assess the effectiveness and limits of coherent
control methods. To date, little work exists in this direction,

and quantitative data of Nm is scarce. The main reason for
this shortcoming is a lack of efficient methods that can inte-
grate the multidimensional time-dependent Schrödinger
equation �TDSE� numerically. Exact calculation of the mul-
tidimensional wave function is prohibitively difficult, as
computational demands increase exponentially with the
number of qubits.

We report here progress on this challenge. We investigate
the multiconfiguration time-dependent Hartree-Fock �MCT-
DHF� approach8–10 and show that it relaxes computational
requirements and opens the door to accurate �10−4–10−5�
modeling and optimization of few-electron dynamics in nan-
odevices and in a broad range of other host systems.

The MCTDHF approach builds on the time-dependent
configuration-interaction �TDCI� method.11 We find that
TDCI is in general not ideally suited for modeling few-
electron qubit dynamics for two reasons. �i� In the nonadia-
batic limit, where a significant fraction of the host spectrum
becomes populated, convergence to accuracies better than
10−2 is extremely slow, and therefore difficult to achieve. �ii�
As the complexity of the spectrum increases rapidly with the
number of qubits, the required number of configurations
quickly becomes unmanageable. MCTDHF relaxes these
constraints by optimizing the basis functions in addition to
the TDCI coefficients, reducing the size of the required Hil-
bert space.

In this paper, MCTDHF is tested and used to optimize the
initialization of two-electron spin-based coded qubits in a
two-dimensional �2D� double quantum dot �DQD�.12–19

MCTDHF is successfully tested against direct integration of
the four-dimensional �4D� TDSE. Optimization is performed
in the strongly nonadiabatic limit on a simple class of poten-
tial ramps, consisting of three linear ramps with variable gra-
dients.

II. QUBIT SUBSPACE

Figure 1�a� shows a schematic of the two-electron DQD
potential, given by V�r , t�=Vl�r , t�+Vb�r , t�+Vr�r , t�. The
potentials of the left, right dot and of the barrier �i= l ,r ,b�
are given by Vi�r , t�=Wi�t�Ui�r�, where Ui�r�=exp�−�r
−di�2 /�i

2�; the left, right dot is centered at dl,r= ��d ,0�,
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while the barrier is located at db= �0,0�. The widths and
heights of the dots and the barrier are given by �i and Wi�t�,
respectively. Only the right dot potential Wr�t�=W+��t� is
assumed to be biased with time, while Wl�t�=W and Wb�t�
=Wb are held constant. The potential detuning is ��t�
=Wr�t�−W, which is varied in the range −2���0. In the
symmetric DQD limit, �=0, shown in Fig. 1�a�, each dot has
one-electron spin, Sl�r�; in the asymmetric limit, �=−2, both
electrons occupy the right dot.

The DQD parameters used here are �l=�r=2.5, �b=1.5,
W=−5, Wb=1.5, and d=2. We use effective atomic units
throughout the paper; energy, size, and time are given in
terms of effective Bohr radius R�, effective Hartree energy
E�, and effective natural time T�, which in GaAs are R�

=9.80 nm, E�=11.85 meV, and T�=55.55 fs, respectively.

The operation of a spin-based coded qubit16 in a DQD is
summarized in Fig. 1�b�. The qubit is encoded in the two
lowest levels of the DQD spectrum, which are the singlet
ground state �1��S and the triplet T0. The qubit operation is
a three-stage process: �i� Initialization; after starting in the
asymmetric ��	0� singlet ground state S with left, right
charge �Ql ,Qr�= �0,2�, the bias is switched off ��→0� adia-
batically. This transfers the system into the ground state S of
the symmetric DQD with �1,1� charge configuration. �ii� Ma-
nipulation; the spin qubit is encoded in the S−T0 states, and
can be addressed due to the small singlet-triplet splitting J at
�=0. �iii� Measurement; the DQD is adiabatically biased
back to its initial state. By assuming spin-to-charge conver-
sion the charge measured on the right dot can be directly
related to the population of the qubit singlet state at the end
of stage �ii�.

The assumption that the remaining Hilbert space in Fig.
1�b� does not play a role in any of those three stages stays
valid as long as the biasing occurs adiabatically. We define
the adiabatic regime by the �stage �i�� initialization time �a
for which the leakage L1=10−4; for the parameters used here
�a�600. For nonadiabatic time scales ��a, charge leaks to
excited singlet states, compromising the gate fidelity; if some
population remains in state �2� once the manipulation stage
�ii� is reached, further leakage will happen to state �3� due to
the smallness of the �2�– �3� splitting 
 at �=0, and from
there to higher states during the ramp-down stage �iii�.

III. MULTICONFIGURATION TIME-DEPENDENT
HARTREE-FOCK APPROACH

The two-electron dynamics of the spin-based coded qubit
is described by the Schrödinger equation

i
�

�t
� = H�r1,r2,t�� = 	


i=1

2

H1�ri,t� + H2�r1,r2��� , �1�

where the wave function is �=��r1 ,r2 , t� � �S�, r= �x ,y� is
the 2D space vector, and the spin singlet state is �S�= �↑↓�
− �↓↑�, which is conserved throughout our analysis. The one-
electron Hamiltonian is H1=T+V�r , t�, with T=−�2 /2 the
kinetic-energy operator, and the two-electron Hamiltonian is
H2=1 /��r2−r1�2+a2, with parameter a arising from the fi-
nite thickness of the 2D DQD �we use a=0.5�.

Equation �1� is solved by the MCTDHF approach,8–10

which relies on the ansatz

��r1,r2,t� = 

j1�j2=1

n

Aj1j2
�t�� j1

�r1,t�� j2
�r2,t��sj1

��sj2
� . �2�

The discussion here is confined to two electrons for the sake
of simplicity. The n single-particle basis functions are char-
acterized by a spin sj = ↑ ,↓ and by an orbital part � j. We use
restricted MCTDHF with n /2 different orbital basis func-
tions; the resulting number of configurations is � n

2 �. The an-
tisymmetry of the wave function � is ensured by imposing
the constraint Aj1j2

=−Aj2j1
on the expansion coefficients.

Both Aj1j2
�t� and � j�r , t� are time dependent and are deter-

mined by the Dirac-Frenkel variational principle,

FIG. 1. �Color online� Panel �a�: schematic of the 2D symmetric
DQD potential profile with one electron in each dot, Sl�r�; the grid
lines depict the numerical grid used in our simulations: 64 points
per dimension in a box ranging from −10 to 10; the dots are cen-
tered at �x ,y�= �d ,0�. The detuning between left and right dot is
given by �=Wr−W. Panel �b�: two-electron spectrum Ei as function
of � for the lowest ten singlets; energy is plotted with reference to
the lowest triplet T0. �, 
, and J denote, respectively, the tunneling
splitting between singlets �1��S and �2�, between singlets �2� and
�3�, and the exchange splitting between S and T0, which depend
on � and Wb; the arrows indicate the values J��=0�=0.007,
���=−0.77�=0.116, and 
��=0�=0.017. The triplets T+ , T− are
not shown, as they are usually split off by an additional magnetic
field, which isolates the Sz=0 two-level subspace formed by S and
T0. Two-electron spectrum calculated from configuration interaction
�CI� diagonalization by using the one-electron basis at each given
value of �.
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��t��i
�

�t
��t� − H�t����t�� = 0. �3�

Performing the variation with regard to Eq. �2� yields a
set of time-dependent, nonlinear coupled integrodifferential
equations for Aj1j2

�t� and � j�r , t�,

i
�

�t
Aj1j2

�t� = 

l1�l2=1

n

Hj1j2l1l2
�t�Al1l2

�t� , �4�

i
�

�t
� j�r,t� = �1 − P�r,t�� 


k,l=1

n

Rjlk�r,t��k�r,t� , �5�

where Rjlk�r , t�=� jl
−1�t�H�lk�r , t�, with � jl�t�=
i=1

n Aji
��t�Ali�t�

as the density matrix. Further, the projector is P�r , t�
=
i=1

n ��i�r , t���i�r , t��, the mean field is given by

H�lk�r,t� = 

i=1

n

Ali�t��i�r2,t��H�t��Aki�t��i�r2,t�� , �6�

while the two-electron matrix elements are given by

Hj1j2l1l2
�t� = � j1

�r1,t�� j2
�r2,t��H�t���l1

�r1,t��l2
�r2,t�� .

�7�

The ground state at t=0 is found via imaginary time
propagation. This converged set of orbitals and coefficients is
then taken as the initial state in the propagation of Eqs. �4�
and �5�, which yields the many-particle wave function in Eq.
�2� at any time instant.

We compare MCTDHF with two other approaches: �i�
with TDCI, which is a special case of MCTDHF, where the
basis functions are kept fixed in time, that is, P=1 in Eq. �5�;
�ii� with a direct split-step integration20 of the 4D TDSE.

IV. QUBIT DYNAMICS

In the following, we first investigate the nonadiabatic21

dynamics of the orbital degrees of freedom in the three-stage
qubit operation described above. Spin manipulation of the
S−T0 qubit, which occurs during stage �ii�, and coupling to
the environment are not regarded here. Then, MCTDHF is
used to optimize L1 for the nonadiabatic initialization pulse.

A. Convergence of MCTDHF compared with TDCI and exact
approaches

In Fig. 2, we show the ground-state probability P1���
= ��1�0� ��1�����2, at the end �t=�� of the biasing pulse ��t�
shown in the inset, as a function of the number of orbitals
�bottom� and configurations �top�. The chosen ramping and
plateau times, tr= tp=50, reflect a worst case scenario that
requires a large number of orbitals to converge the highly
nonadiabatic dynamics. We have plotted the MCTDHF
�circles� and TDCI �squares� results, and for comparison, the
exact result from the integration of the 4D TDSE �line�. For
n=50, the difference between MCTDHF and the exact result
is �3.1�10−4. For all other test calculations the agreement
was even better, between 10−4 and 10−5. As a result, n�50

yields the accuracy required for modeling and optimizing
qubit dynamics.

On the other hand, TDCI converges much slower. Its con-
vergence depends strongly on the chosen basis. We have
tested different basis sets and found fastest convergence for
the one-electron basis of the initially biased ��=−2� DQD.
Although TDCI converges quickly to an accuracy of �1.1
�10−2 for n=100, convergence to higher accuracies is slow
and requires unmanageably large basis sizes. This demon-
strates the advantage of the MCTDHF basis set optimization
during each time step. However, it has to be emphasized that
in the adiabatic regime the convergence issues of TDCI dis-
appear.

The computation time on a Xeon E8400 2.8 GHz single
core processor is 27 h for MCTDHF �n=50�, 15 h for TDCI
�n=100�, while the 4D exact integration takes 16 h. Al-
though the exact approach is more efficient than MCTDHF
in our test calculation, this changes for a larger number of
electrons, and for a higher number of grid points �larger
DQDs�, as the number of points of the exact wave function
grows as �NxNy� f. Here, Nx�y� is the number of grid points in
the x �y� direction and f is the number of electrons. When
Nx ,Ny are doubled for f =2, the exact wave function in-
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FIG. 2. �Color online� Ground-state probability P1��� after a
completed gate cycle �see inset, for tr= tp=50� versus number of
orbitals or configurations �bottom or upper x axis�. Results from
MCTDHF �TDCI� approach are shown with circles �squares�, while
result from the exact solution of the 4D TDSE is shown as solid
line. Inset. Three-stage symmetric bias pulse applied to the right
dot: ramp up �tr� from �0,2� to �1,1� charge configuration; symmet-
ric DQD maintained during plateau �tp�; ramp back to the initial
configuration �tr�. The full cycle takes �=2tr+ tp.
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creases by 16, while MCTDHF ansatz increases only by a
factor of 4. Further, the more favorable scaling of MCTDHF
with f makes it possible to calculate few-electron dynamics.

For TDCI, the workload goes into the calculation of the
time-dependent coefficients, which scales with � n

f �; for n
=100, the number of configurations for f �2 electrons ex-
plodes, e.g., for f =5 one has �108 configurations. MCTDHF
trades off a lower number of orbitals against the solution of
partial differential equations for orbital optimization. For f
=2 the main computational effort goes into the optimization
of the orbitals; even there the optimized basis gives MCT-
DHF a clear gain over TDCI, as Fig. 2 shows. The gain will
become far more pronounced for an increasing number of
electrons, where the workload shifts more toward the calcu-
lation of the configuration coefficients.

B. Nonadiabatic qubit initialization

With the validity of the MCTDHF method established, we
can now use it to optimize the bias pulse of Fig. 2. We focus
here on the qubit initialization, which occurs during the lin-
ear ramp up. For demonstration purposes, a simple class of
optimization functions is used, consisting of three linear
ramps �see dotted line in Fig. 3�. Optimization is done in the
following way. We first solve the multilevel5 equations for
the first ten adiabatic eigenstates of the DQD to scan the
parameter space. Then, MCTDHF, in combination with the
Newton algorithm, is used for finding the local maximum for
P1.

The result is shown in Fig. 3, where P1 is plotted as a
function of time. The result for the single ramp up of Fig. 2
�dashed line� is compared with the optimized triple ramp up
�solid line�. The leakage L1�1− P1 is improved by �2 or-
ders of magnitude, from �4.6�10−1 to �1.4�10−3, for the
same initialization time of tr=52, which is 1 order of mag-
nitude smaller than the adiabatic time �a. In order to reach
the threshold of L1�10−4 required for quantum computation,
L1 has to be further improved by using a more refined set of
optimization functions.22

V. CONCLUSION

We have demonstrated that MCTDHF is capable of quan-
titatively describing few-electron dynamics and to predict
parameters such as leakage, which are of fundamental impor-
tance for quantum computation. We believe that MCTDHF is
currently the most viable approach for the analysis of the

reliability and optimization of few-qubit operations.
MCTDHF was applied to nonadiabatically accelerate

spin-based coded qubit operation in a two-electron DQD.
Only the orbital degrees of freedom were considered. Al-
though coupling to the environment was not considered here,
speeding up of qubit operations is a powerful way to reduce
the influence of the environment since shorter operation
times result in a reduced leakage per operation to the envi-
ronment. The extension to include spin and coupling to the
environment is straightforward and will be done in a future
work.
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